A Nice Separation of Some Seiffert-Type Means by Power Means

نویسندگان

  • Iulia Costin
  • Gheorghe Toader
چکیده

Seiffert has defined two well-known trigonometric means denoted by P and T. In a similar way it was defined by Carlson the logarithmic mean L as a hyperbolic mean. Neuman and Sándor completed the list of such means by another hyperbolic mean M. There are more known inequalities between the means P, T, and L and some power means Ap. We add to these inequalities two new results obtaining the following nice chain of inequalities A0 < L < A1/2 < P < A1 < M < A3/2 < T < A2, where the power means are evenly spaced with respect to their order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

An Optimal Double Inequality between Power-Type Heron and Seiffert Means

For k ∈ 0, ∞ , the power-type Heron meanHk a, b and the Seiffert mean T a, b of two positive real numbers a and b are defined by Hk a, b a ab k/2 b /3 1/k , k / 0; Hk a, b √ ab, k 0 and T a, b a − b /2 arctan a − b / a b , a/ b; T a, b a, a b, respectively. In this paper, we find the greatest value p and the least value q such that the double inequalityHp a, b < T a, b < Hq a, b holds for all a...

متن کامل

Some Sharp Inequalities Involving Seiffert and Other Means and Their Concise Proofs

In the paper, by establishing the monotonicity of some functions involving the sine and cosine functions, the authors provide a unified and concise proof of some known inequalities and find some new sharp inequalities involving the Seiffert, contra-harmonic, centroidal, arithmetic, geometric, harmonic, and root-square means of two positive real numbers a and b with a = b . Mathematics subject c...

متن کامل

Two Sharp Inequalities for Bounding the Seiffert Mean by the Arithmetic, Centroidal, and Contra-harmonic Means

In the paper, the authors find the best possible constants appeared in two inequalities for bounding the Seiffert mean by the linear combinations of the arithmetic, centroidal, and contra-harmonic means.

متن کامل

A best-possible double inequality between Seiffert and harmonic means

* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou, 313000, China Full list of author information is available at the end of the article Abstract In this paper, we establish a new double inequality between the Seiffert and harmonic means. The achieved results is inspired by the papers of Sándor (Arch. Math., 76, 34-40, 2001) and Hästö (Math. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012